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V 

RADARMFIASTmmENT * S OF THE TOTAL CISLUNAR EUCTRON CONTWIT 

Abstract: During three nights and two mornings a t  t h e  end of December 

1964, two lunar radars were used t o  perform the  first measurements of 

t h e  t o t a l  integrated electron density between t h e  ear th  and t h e  moon. 

The measurements were accomplished by determining t h e  difference i n  

time delay between 25 and 50 Mc/s moon-reflected s ignals  t o  an accuracy 

of 10 psec. 

transmissions with time-bandwidth products of 10 . 
The experiment was made possible by t h e  use of FM radar 

5 Subtraction of 

ionospheric electron contents from the  t o t a l s  determined from t h e  

d i f f e ren t i a l  group delay measurements, suggests t h a t  there  are two 

d i s t i n c t  regions beyond t h e  ionosphere. Within t h e  so la r  wind wake 

of t he  earth, i n  the  quadrant opposite t he  sun, t h e  average cislunar 

e lectron density beyond the  ionosphere i s  approximately (300 250) c m  -3 . 
I n  t h e  general direct ion o f  t h e  sun, where most of t h e  radar path is  

beyond t h e  shock wave boundary, t h e  average density is  much lower, 

(100 .is:) crn-’. Ionospheric and magnetospheric contents and experi- 

mental uncertainty are discussed. While only a few measurements have 

been made, t he  i n i t i a l  resu l t s  c l ea r ly  show a marked ef fec t  which i s  

interpreted here as an average electron density inside t h e  shock front,  

i n  a magnetospheric wake extending a t  least as far as t h e  lunar orbi t ,  

which exceeds t h e  so la r  wind density by about 200 ~ m - ~ .  
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General Discussion: 

first lunar radar echoes i n  1946 [De W i t t  and Stodola, 19491, the  major 

s c i e n t i f i c  e f for t  i n  the f i e l d  w a s  centered around determining the  

charac te r i s t ics  of t he  moon as a ref lector .  

t h a t  t he  complicated fading patterns exhibited by lunar 

nals  could be separated in to  two components, one ionospheric and one 

due t o  lunar l i b r a t i o n  CKerr and S h i n ,  19511. 

menters using decameter wavelengths noted t h a t  t he  ionospheric fading 

could be explained i n  part by ro ta t ion  of the  plane of polar izat idn as 

the  s ignal  traversed the  ear th 's  ionosphere [Murray and Hargreaves, 19541 , 
and could thus provide a measure of t he  electron content of the  iono- 

sphere [Browne e t  al, 19561. 

t o t a l  ionospheric electron content by the  use of two frequencies w a s  

employed a t  the  Jod re l l  Bank lunar radar [Taylor, 19631, and has been 

more recently applied at  Stanford as part of a routine lunar radar pro- 

gram. 

t h e  e f f o r t s  of s a t e l l i t e  experimenters [Garriott ,  1960; L i t t l e  and 

Iawrence, 19601 and now, through a recent greater  understanding of t he  

second order e f f ec t s  [Ross, 19631, it i s  l i k e l y  t h a t  t o t a l  ionospheric 

electron content below 1000 km can be determined t o  a few percent. 

During the years following the  attainment of t he  

By 1951, it had been shown 

ref lec ted  sig- 

Then, i n  1953, experi- 

A Faraday ro ta t ion  method f o r  determining 

The technique has become s teadi ly  more refined due primarily t o  

- 

A dispersive Doppler technique, widely used by s a t e l l i t e  experi- 

menters during the  past few years, has been one of t he  most rewarding 

methods of studying the  r a t e  of change of electron content through t h e  

ionosphere and, by the  use of radar, over t he  earth-moon path. Several 

communications i n  t h e  past [Howard e t  al, 1964 a, b] have discussed the  

combination of Doppler and Faraday measurements t o  y ie ld  information 
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where f i s  the  radio frequency and 

not only about the ionosphere, but about t he  medium beyond several  

ear th  r ad i i .  A recently completed study of f ive  months of lunar radar 

returns, using automatic data reduction techniques, has produced 

evidence which strongly suggests t h e  v e r t i c a l  transport  of photoelec- 

t rons i n  the  ionosphere above 1000 km, and i n  addition suggests a dis- 

continuity i n  density i n  t h e  cislunar medium a t  the  ea r th ' s  magneto- 

hydrodynamic shock wave boundary CYoh e t  al, 1965 a, b]. 

r e su l t  i n  par t icu lar  complements the  new group-path measurements 

This last  

reported here. 

Several techniques for measuring t o t a l  electron content along the  

path have been devised [Eshleman, Gallagher and Barthle, 19601, and a 

number of these have been t r i e d  over t he  years with the  Stanford t rans-  

mitters.  Basically, it i s  desired t o  measure the  t o t a l  round t r i p  time 

for a lunar re f lec ted  s ignal  and compare it with the  f igure for propa- 

gation i n  a vacuum. 

The f r ee  space delay time can be expressed as: 

To = S/c 

where S i s  the  t o t a l  path length and c i s  the f r e e  space veloci ty  

of propagation. 

The group velocity of a radio wave i s  re la ted  t o  the  f r e e  space 

veloci ty  by : 

2 2 %  v = c ( 1  - fo  /f ) 
g 

fo i s  the  plasma frequency, and 

it i s  assumed t h a t  f >> fo. 
Finally, the  plasma frequency i s  

f t  = c2reN/. 

re la ted  t o  the  electron density through: 

= 80.6 N 
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where re i s  the  c l a s s i ca l  electron radius (2.8178 x 10-l' meters) and 

N i s  t h e  number of electrons per cubic meter. 

Using these relat ions,  it can be shown t h a t  the  propagation time 

T of t h e  radio frequency energy normalized by t h e  free space delay is: - 
E 2  I T 0 - = 1 + -  

To 2f2 

o r  expressed i n  a more u s e h l w a y :  - 
Q 

T - To f '  

To 2 3  

- 0 - -  

- 
where fo2 i s  t h e  mean square plasma frequency along the  propagation 

p t h ,  and f >> fo  at a l l  points. 

For t h e  moon T i s  about 2.6 seconds and t h e  extra  delay (T - To)  
0 - 

at a radar frequency f of  25 Mc and f o r  N = lo8 m-3 (100 cme3) i s  

16.8 microseconds. Thus, t o  make a meaningful comparison possible, 

6 

In  t h e  absence of precise knowledge of t h e  f r e e  space delay, 

must be known t o  be t t e r  than about 1 part i n  10 . - TO 
2 

fo  
may be determined by measuring the  group delay simultaneously a t  two 

frequencies. The difference in  delays - w i l l  then be: 

where f l  and f2 are t h e  two radar f requenciesand T1 and T2 are 

the  propagation t i m e s  on the  two corresponding frequencies. 

Stanford radars on 25 and 50 Mc, and assuming E = 10 m , t h e  dif- 

For t h e  

8 -3 

f e r e n t i a l  delay w i l l  be 12.63 microseconds. A plot  of calculated dif- 
- 

f e r e n t i a l  delay vs N ( i n  number i s  shown i n  Fig. 1. 
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The d i f f e r e n t i a l  group delay expected from the  ionospheric portion 

of the  earth-moon path can be obtained by using electron dens i t ies  from 

several  sources, such as  s a t e l l i t e s  ~ 6 6  and Syncom [Garr iot t  and Smith, 

19651, and the  Stanford ver t ica l  incidence ionosonde. 

contents noted during December 1964, ranged from a nighttime low of 

about 2 x electrons per square meter t o  a midday high of about 

20 x 10 m . If t h i s  columnar content were t o  be spread evenly along 

t h e  earth-moon path (60 ear th  r a d i i  o r  approximately 400,000 km), it 

would mean an 

group delay terms using, f o r  example, t h e  upper abscissa scale  of Fig. 1, 

it can be seen t h a t  the  var ia t ion i n  group delay caused by the  ionosphere 

alone can range between about 7 and 65 microseconds. 

content i s  probably l e s s  than 3 x 10 m 

diffen?nbial delay terms, less than 10 microseconds. 

The ionospheric 

16 -2 

of from 50 t o  500 cme3. When t rans la ted  t o  d i f f e r e n t i a l  

The magnetospheric 

16 -2 [ H e l l i w e l l ,  19651, or, i n  

A measurement of lunar-echo group delay t o  an accuracy of a f e w  

microseconds is  thus required i n  order t o  es tab l i sh  a useful  measurement 

of t he  cis lunar  columnar electron content. Bperiments toward t h i s  goal 

have been conducted a t  Stanford f o r  several  years. 

The available transmitters a re  essent ia l ly  CW types (with peak- 

power capabi l i ty  of twice t h e i r  average power rating), and several  

pulse-compression techniques have been t r i e d  i n  an attempt t o  achieve 

adequate range resolution and signal-to-noise ra t io .  

ment has been obtained, employing a pseudo-random pulse-code transmission 

and cross correlat ion detection. The r e su l t  agrees w i t h t h o s e  t o  be dis-  

cussed; however, the  data-reduction problems encountered using t h i s  

method have l ed  t o  the  use of t he  a l t e rna te  frequency-modulated system 

A single  measure- 
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described i n  t h e  following paragraphs. 

The use of an FM o r  "chirp" radar i s  a well-known technique fo r  

obtaining high-average power together with good range resolution. 

Inaccuracies involved i n  sweep generation and compression have, however, 

generally r e s t r i c t ed  use of FM transmissions t o  time-bandwidth products 

of 10 o r  less .  

synthesis of a frequency sweep, and t h i s  method allows the  generation of 

an FM signal  with frequency and timing accuracy equal t o  tha t  of the  con- 

t r o l l i n g  frequency standard. 

4 A recent development a t  Stanford has been the  d i g i t a l  

5 

A l i nea r  sweep of 100 kc was executed once per second. 

A time-bandwidth product of 10 w a s  employed f o r  t he  lunar measure- 

The f re -  

One 

ments. 

quency sweeps were radiated simultaneously from two transmitters.  

developed 300 kw of average power output between 24.9 and 25 Mc; t h e  

other  produced 50 kw, sweeping t h e  range from 49.8 t o  49.9 Me. 

antennas used each had a gain of about 25 db. 

log-periodic array on 24.9 Mc and a 150 foot d i sh  on 49.8 Mc. 

nals and timing i n  the  system were synthesized from a c rys t a l  standard 

10 having a s t a b i l i t y  of 5 parts i n  10 per day. Hence, system s t a b i l i t y  

was at  l e a s t  an order of magnitude be t t e r  than the  required measurement 

The 

These were a 48-element 

All sig- 

accuracy. 

Frequency sweeps were s imltaneously transmitted on each frequency 

(25 and 50 Mc) f o r  a period of 2.6 seconds. 

period, the  receivers were connected t o  the  antennas fo r  t he  succeeding 

2.6 seconds, after which the  operation was repeated, resu l t ing  i n  a 

50 percent duty cycle. A second synthesized frequency sweep, i den t i ca l  

t o  t h a t  transmitted but delayed by the  exact lunar round-trip time plus 

Following t h i s  transmitt ing 
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a few microseconds, w a s  emgloyed as  a l oca l  o s c i l l a t o r  s ignal  i n  the  

receivers. The beat note between luna- echoes and t h i s  o s c i l l a t o r  w a s  

recorded on magnetic tape. 

data 64 or  128 times before processing on a Rayspan spectrum analyzer. 

The tape w a s  re-recorded t o  compress the 

A typ ica l  Rayspan readout i s  shown i n  Fig. 2. It can be seen t h a t  

t h e  difference between leading edge posit ions can be determined t o  an 

accuracy of about 10 microseconds. 

both range (time delay a f f ec t s  frequency), and range rate (range r a t e  

Doppler). The presentation i s  d i f fe ren t  from what might be expected, 

s ince the  24.9 Mc t r a n s m i t t e r  is swept upwards i n  frequency, while t he  

49.8 Mc transmit ter  i s  swept downward, due t o  technical  considerations. 

The 24.9 Mc curve thus represents range plus range r a t e  Doppler, while 

t h e  49.8 Mc curve displays range minus range rate Doppler (twice the  

24.9 Mc range r a t e  Doppler). 

3/2 x 50 Mc range r a t e  Doppler plus d i f f e r e n t i a l  group delay. 

r a t e  Doppler i s  measured before and a f t e r  each data run and the  r e su l t s  

plotted. The difference between the  two Rayspan curves i s  scaled m d  

plot ted on the  same graph. The difference between these two curves is  

then d i f f e r e n t i a l  group delay. 

shown i n  Fig. 3 .  

The echo frequency i s  a function of 

The difference between t h e  curves is thus 

Range 

A typ ica l  plot  of scaled r e su l t s  i s  

Since t h e  "chirp" generatioo equipment w a s  heavily committed t o  

other programs, only very limited t i m e  has been devoted t o  lunar work. 

O f  the  eight days' runs, f ive  days produced usable data. Measurements 

made on these f ive  days have been scaled and p lo t ted  using the  method 

described above, 

8 
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Table 1 shows de ta i l s  of date, t i m e  of operation, lunar elevation 

angle a t  t r ans i t ,  

valent columnar electron content between the  ear th  and t h e  moon. Since 

t h e  measurements were made near t h e  lunar transit t i m e ,  t h e  nighttime 

r e s u l t s  apply t o  direct ions away from t h e  sun, while t h e  mid-morning 

r e su l t s  are f o r  direct ions at  the edge of t h e  quadrant toward t h e  sun. 

The geometry i s  i l l u s t r a t e d  i n  Fig. 4. 

t h e  measured d i f f e ren t i a l  group delays, and t h e  equi- 

Even before correcting specif ical ly  f o r  t h e  ionospheric contribution, 

it is  evident from t h e  t o t a l  integrateddensit ies t h a t  there  must be a 

marked difference beyond t h e  ionosphere f o r  so la r  and ant i -solar  direc- 

t ions,  since the  t o t a l  densit ies are comparable while ionospheric densi- 

t i e s  must be markedly different.  

component, ionosonde and satell i te measurements taken a t  t h e  same t i m e  

as the  radar measurements were investigated. 

ionospheric c r i t i c a l  frequencies, integrated ionospheric electron densi- 

t i e s  determined from these frequencies, and ionospheric content deter- 

mined by Faraday polarization measurements on Syncom [Garriott  and Smith, 

19651 and ~ 6 6  [.Bhonsle, 19651 satellites. 

l a t i n g  ionospheric c r i t i c a l  frequencies t o  contents i s  based on a number 

of comparisons of ionosonde and Faraday measurements, and it i s  believed 

t o  be accurate t o  about 220 percent. 

I n  order t o  determine t h e  ionospheric 

I n  t h e  Table are l i s t e d  

The formula used fo r  trans- 

A f t e r  correction f o r  t he  zenith angle, t he  ionospheric contents are 

subtracted from t h e  t o t a l s  t o  give the  cislunar columnar content beyond 

an a l t i t ude  of about 1000 km. These are l i s t e d  i n  t h e  next t o  last  

column i n  t h e  Table. For December 17, 21, and 22, t h e  ionosonde values 

were used, while f o r  December 29 and 30, t he  Syncom measurements were 

11 
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used. In  t h e  last column a r e  l i s t e d  the  corresponding values of average 

volume densi t ies  for  the  cislunar medium beyond the  ionosphere, 

"he dramatic r i s e  i n  columnar content between 0900 and 0930 on 

December 29 i s  believed t o  be due primarily t o  an upward flow of photo- 

electrons from the  upper ionosphere t o  the  lower magnetosphere. 

combined phase path and Faraday polar izat ion measurements on moon echoes, 

Yoh e t  a 1  [1963 b] show, from the average of data taken over a period 

of several  months (including December 19631, t h a t  t he re  is  a difference 

of content of about 5 x 

i n  t h e  morning (upward flow) and afternoon (downward flow). 

of t he  morning change occurs between 0900 and 1000. 

Using 

m-* as reg is te red  by these two measurements 

Nearly a l l  

In Fig. 4, t he  geometry of t h e  radar paths on t h e  various days i s  

shown with reference t o  t h e  earth-sun l i ne ,  The posit ions i n  the  

e c l i p t i c  of t he  solar-wind produced shock front  and magnetopause, as 

measured by IMP1 [.Ness e t  al, 19641, a r e  a l so  shown. With the  radar 

paths a re  indicated average electron volume densi t ies ,  and uncertaint ies  

i n  these values, f o r  the  cislunar medium beyond about 1000 km. The 

error limits are based on a $5 t o  10 psec combined uncertainty i n  mea- 

surement and i n  ionospheric content, plus an allowance i n  the  daytime 

r e su l t s  of 3 x 10 m for electron t ransport  between ionosphere and 

magnetosphere. 

spheric content, but none i s  made of t he  remaining magnetospheric 

content e 

16 -2 

Thus an allowance i s  made f o r  a change i n  the magneto- 

Taking i n t o  account t h e  various considerations discussed above, it 

appears that t h e  daytime results are consistent with the  extremely low 

(0 - 10 ~ m - ~ )  e lectron densi t ies  i n  the  region beyond the  shock f ront  
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determined by several  plasma probes. The uncertaint ies  a r e  such tha t  

these radar re su l t s  cannot be used t o  help define this density. 

A very d i f fe ren t  picture  i s  obtained from the  nighttime resul ts ,  

however. After an allowance of about 3 x 10 m integrated density 16 -2 

i s  made for the  higher volume density i n  the  magnetosphere near the  

earth (out of perhaps f i v e  earth r ad i i ) ,  it appears t h a t  a volume density 

of 150 t o  250 cm-’ i s  required i n  t h e  an t i - so la r  quadrant, a l l  of the  way 

t o  t h e  o rb i t  of t h e  moon. 

The present results, based on individual group-path measurements, 

complement those reported by Yoh e t  a1 61965 a], which a r e  based on a 

five-month average of phase-path and Faraday polar izat ion measurements. 

Together they suggest t ha t :  

a. the  average cis lunar  electron density, i n  regions w e l l  away 
from the  earth,  i s  higher by several  hundred electrons per 
cubic centimeter i n  the ant i -solar  quadrant than i n  direct ions 
toward the  sun; 

b. t h i s  change i n  density appears t o  occur with high gradients i n  
the  general region of t h e  shack f ran t ;  and 

c. t h i s  high gradient region extends at  l e a s t  t o  t he  o rb i t  of the  
moon. 

It i s  not yet c l ea r  Just how t h e  present r e s u l t s  compare with 

theory and other measurements. 

density changes a t  a shock f r o n t  i n  a co l l i s ion less  plasma Leego, Colgate, 

19591 would give considerably lower dens i t ies  ins ide  t h e  shock than sug- 

Theoretical expectations f o r  volume 

gested above, unless the  solar wind density i s  much higher than the  

values which are now popular. However, these theor ies  are ra ther  idea- 

l i z e d  f o r  application t o  t he  present prolxlem, and they are s t i l l  under 

development. Plasma measurements on IMP-I imply values inside the shock 

15 



front of from about four t o  more than a hundred electrons per cubic 

centimeter [Wolfe 1965; Olbert 1965; Serbu, 19641. The various 

instruments, however, work on d i f fe ren t  pr inciples  and are sens i t ive  t o  

somewhat d i f fe ren t  energy levels. It would appear t h a t  the  retarding 

poten t ia l  analyzer can best  be used for comparison purposes, since it 

includes measurements of the  more numerous electrons a t  thermal (0-5 ev) 

energies. 

-’ -9 - 

Preliminary r e su l t s  for the re tarding potent ia l  analyzer on o rb i t  

number one of IMP-I, as  reported by Serbu [ 19641 , imply an electron 

density of about 200 

electrons i n  t h i s  energy range outside t h e  shock. 

shock front  was at  16 ear th  rad i i . )  

t h i s  energy range a t  the magnetopause (11 ear th  r a d i i ) F  while i n  t h e  

region from 2 t o  4 ea r th  radii, t h e  density drops from several thousand 

t o  several  hundred electrons per  cubic centimeter. 

measurement of electron density change across the  shock adds credence t o  

t h e  radar interpretat ion,  although it pertains t o  a shock wave area near 

t h e  earth, i n  t he  general direct ion of t he  sun. 

on t h e  other hand, suggest charac te r i s t ics  of t h e  geometry, density, 

a.nd change i n  density f o r  more d i s t an t  regions of t h e  shock wave 

So-~-,C?arj and t h e  c i s h r a r  medim. 

inside t h e  shack front, with no measurable 

(For t h i s  o r b i t  t h e  

There appear t o  be no changes i n  

This s ingle-orbi t  

The radar experiments, 

The radar  experiment described here needs t o  be refined, and con- 

siderably more data should be accumulated. A preliminary report i s  

being made a t  t h i s  t b e  because t h e  i n i t i a l  r e su l t s  appear t o  be 

important with respect t o  t h e  models of t h e  so la r  wind and the  wakes 

16 
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of t he  ear th  and moon which are developing very rapidly from a comblna- 

t i o n  of theory and space probe and radar measurements. 
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